3.32 \(\int \frac{1}{(b x+c x^2)^{2/3}} \, dx\)

Optimal. Leaf size=322 \[ \frac{\sqrt [3]{2} 3^{3/4} \sqrt{2-\sqrt{3}} b^2 \left (-\frac{c \left (b x+c x^2\right )}{b^2}\right )^{2/3} \left (1-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}\right ) \sqrt{\frac{2 \sqrt [3]{2} \left (-\frac{c x (b+c x)}{b^2}\right )^{2/3}+2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}+1}{\left (-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}-\sqrt{3}+1\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}+\sqrt{3}+1}{-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}-\sqrt{3}+1}\right ),4 \sqrt{3}-7\right )}{c (b+2 c x) \left (b x+c x^2\right )^{2/3} \sqrt{-\frac{1-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}}{\left (-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}-\sqrt{3}+1\right )^2}}} \]

[Out]

(2^(1/3)*3^(3/4)*Sqrt[2 - Sqrt[3]]*b^2*(-((c*(b*x + c*x^2))/b^2))^(2/3)*(1 - 2^(2/3)*(-((c*x*(b + c*x))/b^2))^
(1/3))*Sqrt[(1 + 2^(2/3)*(-((c*x*(b + c*x))/b^2))^(1/3) + 2*2^(1/3)*(-((c*x*(b + c*x))/b^2))^(2/3))/(1 - Sqrt[
3] - 2^(2/3)*(-((c*x*(b + c*x))/b^2))^(1/3))^2]*EllipticF[ArcSin[(1 + Sqrt[3] - 2^(2/3)*(-((c*x*(b + c*x))/b^2
))^(1/3))/(1 - Sqrt[3] - 2^(2/3)*(-((c*x*(b + c*x))/b^2))^(1/3))], -7 + 4*Sqrt[3]])/(c*(b + 2*c*x)*(b*x + c*x^
2)^(2/3)*Sqrt[-((1 - 2^(2/3)*(-((c*x*(b + c*x))/b^2))^(1/3))/(1 - Sqrt[3] - 2^(2/3)*(-((c*x*(b + c*x))/b^2))^(
1/3))^2)])

________________________________________________________________________________________

Rubi [A]  time = 0.394286, antiderivative size = 322, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {622, 619, 236, 219} \[ \frac{\sqrt [3]{2} 3^{3/4} \sqrt{2-\sqrt{3}} b^2 \left (-\frac{c \left (b x+c x^2\right )}{b^2}\right )^{2/3} \left (1-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}\right ) \sqrt{\frac{2 \sqrt [3]{2} \left (-\frac{c x (b+c x)}{b^2}\right )^{2/3}+2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}+1}{\left (-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}-\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}+\sqrt{3}+1}{-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{c (b+2 c x) \left (b x+c x^2\right )^{2/3} \sqrt{-\frac{1-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}}{\left (-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}-\sqrt{3}+1\right )^2}}} \]

Antiderivative was successfully verified.

[In]

Int[(b*x + c*x^2)^(-2/3),x]

[Out]

(2^(1/3)*3^(3/4)*Sqrt[2 - Sqrt[3]]*b^2*(-((c*(b*x + c*x^2))/b^2))^(2/3)*(1 - 2^(2/3)*(-((c*x*(b + c*x))/b^2))^
(1/3))*Sqrt[(1 + 2^(2/3)*(-((c*x*(b + c*x))/b^2))^(1/3) + 2*2^(1/3)*(-((c*x*(b + c*x))/b^2))^(2/3))/(1 - Sqrt[
3] - 2^(2/3)*(-((c*x*(b + c*x))/b^2))^(1/3))^2]*EllipticF[ArcSin[(1 + Sqrt[3] - 2^(2/3)*(-((c*x*(b + c*x))/b^2
))^(1/3))/(1 - Sqrt[3] - 2^(2/3)*(-((c*x*(b + c*x))/b^2))^(1/3))], -7 + 4*Sqrt[3]])/(c*(b + 2*c*x)*(b*x + c*x^
2)^(2/3)*Sqrt[-((1 - 2^(2/3)*(-((c*x*(b + c*x))/b^2))^(1/3))/(1 - Sqrt[3] - 2^(2/3)*(-((c*x*(b + c*x))/b^2))^(
1/3))^2)])

Rule 622

Int[((b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(b*x + c*x^2)^p/(-((c*(b*x + c*x^2))/b^2))^p, Int[(-((
c*x)/b) - (c^2*x^2)/b^2)^p, x], x] /; FreeQ[{b, c}, x] && RationalQ[p] && 3 <= Denominator[p] <= 4

Rule 619

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[1/(2*c*((-4*c)/(b^2 - 4*a*c))^p), Subst[Int[Si
mp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]

Rule 236

Int[((a_) + (b_.)*(x_)^2)^(-2/3), x_Symbol] :> Dist[(3*Sqrt[b*x^2])/(2*b*x), Subst[Int[1/Sqrt[-a + x^3], x], x
, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b}, x]

Rule 219

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 - Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 + Sqrt[3
])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[-((s*(s + r*x))/((1 - S
qrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rubi steps

\begin{align*} \int \frac{1}{\left (b x+c x^2\right )^{2/3}} \, dx &=\frac{\left (-\frac{c \left (b x+c x^2\right )}{b^2}\right )^{2/3} \int \frac{1}{\left (-\frac{c x}{b}-\frac{c^2 x^2}{b^2}\right )^{2/3}} \, dx}{\left (b x+c x^2\right )^{2/3}}\\ &=-\frac{\left (\sqrt [3]{2} b^2 \left (-\frac{c \left (b x+c x^2\right )}{b^2}\right )^{2/3}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-\frac{b^2 x^2}{c^2}\right )^{2/3}} \, dx,x,-\frac{c}{b}-\frac{2 c^2 x}{b^2}\right )}{c^2 \left (b x+c x^2\right )^{2/3}}\\ &=\frac{\left (3 \left (-\frac{c \left (b x+c x^2\right )}{b^2}\right )^{2/3} \sqrt{-1-\frac{4 c x}{b}-\frac{4 c^2 x^2}{b^2}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-1+x^3}} \, dx,x,2^{2/3} \sqrt [3]{-\frac{c x \left (1+\frac{c x}{b}\right )}{b}}\right )}{2^{2/3} \left (-\frac{c}{b}-\frac{2 c^2 x}{b^2}\right ) \left (b x+c x^2\right )^{2/3}}\\ &=\frac{\sqrt [3]{2} 3^{3/4} \sqrt{2-\sqrt{3}} b^2 \left (-\frac{c \left (b x+c x^2\right )}{b^2}\right )^{2/3} \sqrt{-1-\frac{4 c x}{b}-\frac{4 c^2 x^2}{b^2}} \left (1-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}\right ) \sqrt{\frac{1+2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}+2 \sqrt [3]{2} \left (-\frac{c x (b+c x)}{b^2}\right )^{2/3}}{\left (1-\sqrt{3}-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}\right )^2}} F\left (\sin ^{-1}\left (\frac{1+\sqrt{3}-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}}{1-\sqrt{3}-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}}\right )|-7+4 \sqrt{3}\right )}{c (b+2 c x) \left (b x+c x^2\right )^{2/3} \sqrt{-1-\frac{4 c x (b+c x)}{b^2}} \sqrt{-\frac{1-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}}{\left (1-\sqrt{3}-2^{2/3} \sqrt [3]{-\frac{c x (b+c x)}{b^2}}\right )^2}}}\\ \end{align*}

Mathematica [C]  time = 0.0112151, size = 43, normalized size = 0.13 \[ \frac{3 x \left (\frac{c x}{b}+1\right )^{2/3} \, _2F_1\left (\frac{1}{3},\frac{2}{3};\frac{4}{3};-\frac{c x}{b}\right )}{(x (b+c x))^{2/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*x + c*x^2)^(-2/3),x]

[Out]

(3*x*(1 + (c*x)/b)^(2/3)*Hypergeometric2F1[1/3, 2/3, 4/3, -((c*x)/b)])/(x*(b + c*x))^(2/3)

________________________________________________________________________________________

Maple [F]  time = 0.651, size = 0, normalized size = 0. \begin{align*} \int \left ( c{x}^{2}+bx \right ) ^{-{\frac{2}{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x^2+b*x)^(2/3),x)

[Out]

int(1/(c*x^2+b*x)^(2/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + b x\right )}^{\frac{2}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+b*x)^(2/3),x, algorithm="maxima")

[Out]

integrate((c*x^2 + b*x)^(-2/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{{\left (c x^{2} + b x\right )}^{\frac{2}{3}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+b*x)^(2/3),x, algorithm="fricas")

[Out]

integral((c*x^2 + b*x)^(-2/3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (b x + c x^{2}\right )^{\frac{2}{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x**2+b*x)**(2/3),x)

[Out]

Integral((b*x + c*x**2)**(-2/3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + b x\right )}^{\frac{2}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^2+b*x)^(2/3),x, algorithm="giac")

[Out]

integrate((c*x^2 + b*x)^(-2/3), x)